

Requirements for solvents for the MSR

- √ Wide range of solubility for actinides
- ✓ Thermodynamically stable up to high temperatures
- ✓ Stable to radiation (no radiolytic decomposition)
- ✓ Low vapour pressure at the operating temperature of the reactor
- ✓ Compatible with nickel-based structural materials
- ✓ Compatible with the clean-up technology

Only a limited number of metals is suitable from neutronic consideration

Chemical potential of fluorine

✓ is the equilibrium fluorine pressure of a reduction/oxidation reaction:

$$M(s) + n/2F_2(g) = MF_n(s)$$

$$K_p = \frac{1}{p(F_2)^{\frac{n}{2}}}$$

- ✓ Fission increases the fluorine potential
 - The average valence of the fission products is lower than 4+ of uranium

Fluorine potential and electropotential

$$\mathsf{MF}_\mathsf{n}(\mathsf{s}) = \mathsf{M}(\mathsf{s}) + \mathsf{n}/2\mathsf{F}_2(\mathsf{g})$$

$$\Delta G_r = \mathbf{R}T \ln(p(F_2)) = n\mathbf{F}E$$

$$UF_4(ss) = UF_3(ss) + \frac{1}{2}F_2(g)$$

$$E = E^0 + \frac{\mathbf{R}T}{n\mathbf{F}} \ln \frac{a(UF_3)}{a(UF_4)}$$

Standard potential in LiF-BeF₂ (66-34) relative to the HF(g)/H₂ couple 1000 K.

int search

Oxygen chemistry of the salt

✓ Oxygen plays an important role in the fuel chemistry

ThF₄(sln) + 2O(sln) = ThO₂(s) + 2F₂(g)
$$\downarrow \qquad \qquad \downarrow$$
dissolved precipitate

- Oxygen concentration in fuel salt must be low ($x_0 < 8 \cdot 10^{-4}$)
- Requires fluorination of starting material (with HF(g))
- Control of the oxidation potential of the fuel

Joint Research

Corrosion

1. Reaction with the oxide film on the metal

$$Cr_2O_3(s) + BeF_2(sIn) = CrF_2(sIn) + BeO(s) + \frac{1/2F_2(g)}{s}$$

2. Reaction with impurities from fabrication process

$$Cr(alloy) + 2HF(sln) = CrF_2(sln) + H_2(g)$$

 $Cr(alloy) + FeF_2(sln) = CrF_2(sln) + Fe(s)$

3. Reaction with fuel constituents

$$Cr(alloy) + 2UF_4(sln) = CrF_2(sln) + 2UF_3(sln)$$

11

Fission product chemistry of the salt

✓ How well are the fission products retained in the fuel?

$$M(s) + \frac{n/2F_2(g)}{n} = MF_n(sln)$$

Chemical state of the FPs:

- Dissolved in the liquid salt
- Metallic precipitates
- Gas

Surface water distribution of cesium-137 from Fukushima in 2012 (Department of Fisheries and Oceans, 2014)

> Cs, Ba, Sr, Zr, La, I, ... Mo, Pd, Rh, Tc, Te

Kr, Xe

Joint Research Centre

Fuel salt clean-up: Protactinium

232
Th + n \rightarrow 233 Th \rightarrow 233 Pa \rightarrow 233 U 27 days

²³³ U	²³⁴ U	²³⁵ U
	²³³ Pa	²³⁴ Pa
	²³² Th	²³³ Th

- Pa is co-extracted with the lanthanides
- Must be separated by extraction or electrochemically
- Must be stored to fully decay to ²³³U
- The ²³³U will be fed back into the cycle

19

Challenges in the fuel chemistry

- ✓ Optimise composition with respect to safety margins and properties
 - o Oxygen measurement and control
 - o Redox measurement and control (corrosion)
- ✓ Demonstration of fuel fabrication & purification techniques
- ✓ Understanding of the fission product chemistry and in particular demonstrate the behaviour of Cs, I and Te
- ✓ Optimise and demonstate the clean-up technology
 - o Helium bubbling for metallic particles
 - o Fission product removal using extraction techniques

